If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-5a-1=0
a = 1; b = -5; c = -1;
Δ = b2-4ac
Δ = -52-4·1·(-1)
Δ = 29
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{29}}{2*1}=\frac{5-\sqrt{29}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{29}}{2*1}=\frac{5+\sqrt{29}}{2} $
| 4q=76 | | 6-7x-2x=-12 | | 84+96+96+15x+96=360 | | 6=(4x-2)÷3 | | 6(=4x-2)÷3 | | 3(2.5-k)-k=14.5 | | 6=4x-2/3 | | 6n-18-2n=10 | | 9/2x-4=5 | | 5x=11x-770 | | 5x-27=3-x | | 8)2(n+5)=-2 | | b+390=-8b+3 | | -9(10x-4)+6=3(x+14) | | b-36=-b-6 | | 8.7=m/6 | | -n-6=n+52 | | (2x-15)=0 | | e-65=-e-7 | | -6×-83=21-10x | | x³/2+x²/4-1/2,x=-2 | | -a+4=a+80 | | p+62=-p+6 | | 19x+6=17x-18 | | -115+2x=50-3x | | t+54=-t+6 | | 2x-78=6x+50 | | R2+14r+49=0 | | x*x+2=3*x*x-16 | | -94+8x=176-x | | 9a+5a-12a=16 | | -57-5x=-11x+75 |